A machine learning study to predict wind-driven water runback characteristics

Author:

Wang Jincheng1ORCID,Hu Haiyang1ORCID,He Ping1ORCID,Hu Hui1ORCID

Affiliation:

1. Department of Aerospace Engineering, Iowa State University , Ames, Iowa 50011-1096, USA

Abstract

The unsteady runback behavior of wind-driven runback water film (WDRWF) flows over aircraft surfaces has a significant impact on the aircraft icing process, one of the most significant aviation hazards in cold weather. The limited understanding of the complex multiphase interactions between freestream airflow, water film motion, and solid airframe surface makes conventional theoretical/numerical methods unable to precisely simulate WDRWF flow. Machine learning-based techniques can accurately capture complex physics using data, making it an attractive alternative to conventional methods. In this study, machine learning methods are used to predict the evolution of the front contact point (FCP) of WDRWF flow and film thickness distribution (FTD) of WDRWF flow. For FCP prediction, the performance of the Light Gradient-Boosting Machine (LightGBM) and Multi-Layer Perceptron is compared quantitatively. They perform well in capturing intermittent and smooth features, respectively. For the prediction of the spatial-temporal evolution of FTD, a computationally efficient deep neural network architecture named ConvLSTM-AutoEncoder was developed, which predicts a future FTD based on a sequence of FTDs in the past. The robustness of the ConvLSTM-AutoEncoder model to noisy input FTD is demonstrated. The generalizability of the three models is evaluated by applying the trained models to unexplored datasets. Based on the proposed techniques' generalizability, robustness, and computational efficiency, machine learning-based methods are demonstrated to be powerful tools in predicting the complex unsteady characteristics of the multiphase WDRWF flows.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3