An accuracy-enhanced transonic flow prediction method fusing deep learning and a reduced-order model

Author:

Jia XuyiORCID,Gong ChunlinORCID,Ji WenORCID,Li ChunnaORCID

Abstract

It is difficult to accurately predict the flow field over an aircraft in the presence of shock waves due to its strong nonlinear characteristics. In this study, we developed an accuracy-enhanced flow prediction method that fuses deep learning and a reduced-order model to achieve accurate flow field prediction for various aerodynamic shapes. Herein, we establish a convolutional neural network/proper orthogonal decomposition (CNN-POD) model for mapping geometries to the overall flow field. Then, local flow regions containing nonlinear flow structures can be identified by the POD reconstruction to build the enhanced model. A CNN model is established to map geometries to the local flow field. The proposed method was applied to two cases involving the prediction of transonic flow over airfoils. The results indicate that the proposed accuracy-enhanced flow prediction method can reduce the prediction error for flow properties in regions with nonlinear flow structures by values ranging from 13% to 66.27%. Additionally, the proposed method demonstrates better efficiency and robustness in comparison to existing methods, and it can also address the prediction problem of complex transonic flow with multiple strong nonlinear structures.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3