An improved deep learning model for sparse reconstruction of cavitation flow fields

Author:

Xu YuhangORCID,Sha YangyangORCID,Wang CongORCID,Wei YingjieORCID

Abstract

Recovering full states from limited observations provides supports for active control of the cavitation, preventing power loss due to cavitation erosion. Recent advances in deep learning provide essential support for constructing accurate state estimators. In this work, the commonly used CNNs (convolutional neural networks)-based encoder for reconstructing the full-state field from sparse observations is carefully investigated. The results reveal that the potential information loss and weak negative correlations between features generated by the encoder can significantly impair the feature representation capability of models. To address these issues, a specially designed transformer-based encoder is employed in this work to generate dense and positively correlated features for the decoder. Tests on the cavitation dataset demonstrate impressive improvements in prediction accuracy. Moreover, visualizations of the training process also confirm the enhanced convergence speed due to the model improvements. Notably, the model represents the first specifically designed deep learning model for predicting velocity fields from sparse pressure observations on the hydrofoil. The proposed model holds the promise to achieve accurate flow field reconstruction, providing support for active cavitation control aimed at enhancing turbine operational efficiency and reducing power loss.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3