In Flight Ice Shape Prediction with Data Fit Surrogate Models

Author:

Akbal Omer,Ayan Erdem,Murat Canibek,Ozgen Serkan

Abstract

<div class="section abstract"><div class="htmlview paragraph">Accurate simulation of icing is important for the assessment of several potential icing scenarios and complex icing regulations. However, performing all possible icing scenarios is a demanding process in terms of computational cost, especially when modification of the geometry due to ice accretion is required. Additionally, aircraft icing safety assessment necessitates an evaluation of the accumulated ice. Thus, numerical representation of the non-linear and complex geometries is essential for the parametrization of this ice. Indeed, surrogate models have the capability of predicting these complex, non-linear shapes. For this purpose, a method for ice accretion prediction on a selected airfoil, NACA 22112, is proposed in this study with different surrogate models that will later be used for fast prediction in 6DOF simulations to directly evaluate its effects on aerodynamic performance during flight. The required datasets in order to train for clean and iced airfoils are based on numerical analysis results obtained through the FENSAP-ICE 2022 R1 commercial tool with a multi-shot technique. They are generated by varying four variables (liquid water content, ambient temperature, median volumetric diameter, and exposure time), which are the most prominent atmospheric or cloud parameters for ice shapes. The combination of these input datasets is selected based on the 14 CFR Part 25 Appendix-C envelopes, and ice shapes are modeled by applying the Fourier series expansion approach. According to the results, nearly 30 Fourier coefficients can accurately capture nonlinear rime ice shapes within acceptable deviations. Moreover, surrogate models such as artificial neural networks and Gaussian processes are compared to predict these coefficients in terms of their ability to capture targeted ice shapes.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3