MHD stagnation point flow on a shrinking surface with hybrid nanoparticles and melting phenomenon effects

Author:

Pop Ioan,Waini Iskandar,Ishak Anuar

Abstract

Purpose This study aims to explore the stagnation flow over a shrinking surface in a hybrid nanofluid consists of Al2O3 and Cu nanoparticles. Here, the flow is subjected to the magnetohydrodynamic (MHD) and the melting phenomenon effects. Design/methodology/approach The similarity variables are used to gain the similarity equations. These equations are solved via the bvp4c solver. The effects of several physical parameters on the flow and the thermal characteristics of the hybrid nanofluid are analysed and discussed. Later, the temporal stability analysis is used to determine the stability of the dual solutions obtained as time evolves. Findings Results show that two solutions are found for the limited range of the stretching/shrinking parameter λ, and then these solutions are terminated at λ=λc. The rise of the melting parameter Me from 0 to 2 contributes to enhance 109.63% of the local Nusselt number Rex-1/2Nux and 3.30% of the skin friction coefficient Rex1/2Cf. Contrarily, the values of Rex-1/2Nux and Rex1/2Cf decline by 25.04% and 5.58%, respectively, as the magnetic parameter Mg increases from 0 to 0.3. Additionally, Al2O3-Cu/water has the highest values of Rex1/2Cf and the lowest values of Rex-1/2Nux. Lastly, it is found that the first solution is physically stable as time evolves. Originality/value This paper considers the MHD stagnation point flow of a hybrid nanofluid over a shrinking surface with the melting phenomenon effects. Most importantly, it is shown that there exist dual solutions within a specific range of the physical parameters. Besides, the temporal stability of the solutions is also reported in this study. The finding can contribute to foresee the flow and thermal behaviours in industrial applications. Also, the suitable values of parameters can be determined to avoid misjudgement in flow and heat transfer analysis.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3