Solar thermal energy of Oldroyd-B nanofluidic flow containing gyrotactic microorganisms through interaction of magnetic field

Author:

Vinodh Kumar Pallamkuppam1,Obulesu Yeddula Pedda1ORCID

Affiliation:

1. School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Abstract

The bioconvective flows are truly connected to real-life and engineering development. So, the models of biomicrosystems and biocells are considered for the technical analysis in this paper. Our intention for the current analysis was to theoretically examine electrical conduction flow into mass and heat transfer by an extensive gyrotactic microorganism into an inclined magnetic field toward a vertical stretching sheet with nonlinear solar radiation with different solar thermal appliances. The effect on velocity slip and Joule heating was again studied in detail. This classical problem on Navier Stokes equations to the current imitation was decreased to ordinary differential equations by applying the comparison method. The numerical solutions were changed by boundary value problem (BVP) to clarify the subject into finite difference numerical scheme by applying MATLAB. The important results show that the density of motile microorganisms reduces to the bioconvection Lewis number and Peclet number, although reverse performance was noticed for the bioconvection Rayleigh number. Further, solar radiation fosters heat transport. In this paper, complete analysis is provided for potential functions of solar thermoelectric cells, solar ponds, solar thermal power fabrication, etc.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viscoelastic fluid flow on variable thickness sheets using a three-element viscous model;International Journal of Modelling and Simulation;2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3