Abstract
PurposeThe purpose of this study is to present both effective analytic and numerical solutions to MHD flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid with suction/injection and convective boundary conditions. Water (base fluid) nanoparticles of alumina and copper were considered as a hybrid nanofluid.Design/methodology/approachProper-similarity variables were applied to transform the system of partial differential equations into a system of ordinary (similarity) differential equations. Exact analytical solutions were then presented for the dimensionless stream and temperature functions. Further, the authors introduce a very nice analytic and numerical solutions for both small and large values of the magnetic parameter.FindingsIt was found that no/unique/two equal/dual physical solutions exist for the investigated boundary value problem. The physically realizable practice of these solutions depends on the range of the governing parameters. For a stretching/shrinking sheet, it was deduced that a hybrid nanofluid works as a cooler on increasing some of the investigated parameters. Moreover, in the case of a shrinking sheet, the first solutions of hybrid nanofluid are stable and physically realizable rather than the nanofluid, while those of the second solutions are not for both hybrid nanofluid and nanofluid.Originality/valueThe present results for the hybrid nanofluids are new and original, as they successfully extend (generalize) the problems previously considered by different authors for the case of nanofluids.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献