Abstract
PurposeOnline review bias research has predominantly focused on self-selection biases on the user’s side. By collecting online reviews from multiple platforms and examining their biases in the unique digital environment of “Chinanet,” this paper aims to shed new light on the multiple sources of biases embedded in online reviews and potential interactions among users, technical platforms and the broader social–cultural norms.Design/methodology/approachIn the first study, online restaurant reviews were collected from Dianping.com, one of China's largest review platforms. Their distribution and underlying biases were examined via comparisons with offline reviews collected from on-site surveys. In the second study, user and platform ratings were collected from three additional major online review platforms – Koubei, Meituan and Ele.me – and compared for possible indications of biases in platform's review aggregation.FindingsThe results revealed a distinct exponential-curved distribution of Chinese users’ online reviews, suggesting a deviation from previous findings based on Western user data. The lack of online “moaning” on Chinese review platforms points to the social–cultural complexity of Chinese consumer behavior and online environment that goes beyond self-selection at the individual user level. The results also documented a prevalent usage of customized aggregation methods by review service providers in China, implicating an additional layer of biases introduced by technical platforms.Originality/valueUsing an online–offline design and multi-platform data sets, this paper elucidates online review biases among Chinese users, the world's largest and understudied (in terms of review biases) online user group. The results provide insights into the unique social–cultural cyber norm in China's digital environment and bring to light the multilayered nature of online review biases at the intersection of users, platforms and culture.
Subject
Tourism, Leisure and Hospitality Management
Reference73 articles.
1. Broadcasting opinions with an overconfident sender;International Economic Review,2004
2. The impact of online reputation on hotel profitability;International Journal of Contemporary Hospitality Management,2020
3. Deriving the pricing power of product features by mining consumer reviews;Management Science,2011
4. Understanding and overcoming biases in online review systems;Decision Support Systems,2017
5. Selection bias in web surveys;International Statistical Review,2010
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献