Abstract
PurposeA low-cost but credible method of low-subsonic flutter analysis based on ground vibration test (GVT) results is presented. The purpose of this paper is a comparison of two methods of immediate flutter problem solution: JG2 – low cost software based on the strip theory in aerodynamics (STA) and V-g method of the flutter problem solution and ZAERO I commercial software with doublet lattice method (DLM) aerodynamic model and G method of the flutter problem solution. In both cases, the same sets of measured normal modes are used.
Design/methodology/approachBefore flutter computation, resonant modes are supplied by some non-measurable but existing modes and processed using the author’s own procedure. For flutter computation, the modes are normalized using the aircraft mass model. The measured mode orthogonalization is possible. The flutter calculation made by means of both methods are performed for the MP-02 Czajka UL aircraft and the Virus SW 121 aircraft of LSA category.
FindingsIn most cases, both compared flutter computation results are similar, especially in the case of high aspect wing flutter. The Czajka T-tail flutter analysis using JG2 software is more conservative than the one made by ZAERO, especially in the case of rudder flutter. The differences can be reduced if the proposed rudder effectiveness coefficients are introduced.
Practical implicationsThe low-cost methods are attractive for flutter analysis of UL and light aircraft. The paper presents the scope of the low-cost JG2 method and its limitations.
Originality/valueIn comparison with other works, the measured generalized masses are not used. Additionally, the rudder effectiveness reduction was implemented into the STA. However, Niedbal (1997) introduced corrections of control surface hinge moments, but the present work contains results in comparison with the outcome obtained by means of the more credible software.
Reference29 articles.
1. Proportional optimal orthogonalization of measured modes;AIAA Journal,1980
2. Binary flutter calculation with theoretical and empirical aerodynamic derivatives for a wing-control surface system in two-dimensional incompressible flow,1968
3. Aeroelastic certification of light sport aircraft according to LTF regulation,2013
4. Critical flutter speed of sailplanes calculated for high altitude. Examples of computation;Technical Soaring,1993
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献