Temperature-Frequency–Dependent Viscoelastic Properties of Neat Epoxy and Fiber Reinforced Polymer Composites: Experimental Characterization and Theoretical Predictions

Author:

Naresh KakurORCID,Khan Kamran Ahmed,Umer RehanORCID,Vasudevan Alagumalai

Abstract

In general, aerospace structures manufactured using fiber reinforced polymer composites are exposed to fluctuating temperatures and subjected to cyclic loading during their service life. Therefore, studying the temperature-frequency dependent properties of composites for different fiber orientations is essential. However, such experiments are expensive, time-consuming and labor-intensive while theoretical models minimize these issues, but temperature-frequency-dependent viscoelastic models for predicting the full-range of the storage and loss moduli curves of composites are limited. In this study, the dynamic mechanical properties of a neat epoxy resin, unidirectional ([0°]6, [45°]6 and [90°]6), symmetric angle-ply [+45°/−45°/+45°]s and quasi-isotropic [±45°/0°/90°]s carbon/epoxy and glass/epoxy composite panels were investigated. Experiments were performed from room temperature (approximately 35 °C) to 160 °C at five different frequencies (1, 10, 20, 33 and 50 Hz). Two parameter viscoelastic models as function of temperature and frequency were used, and their applicability in predicting the storage and loss moduli for the entire region of the temperature curve is shown. The storage modulus values were compared and validated against the static flexural modulus values coupled with scanning electron microscopy analysis. The flexural and storage moduli values were found to be higher for [0°]6 carbon/epoxy composites, while the activation energy values were found to be higher in the case of [+45°/−45°/+45°]s carbon/epoxy composites compared with epoxy resin and other laminates in different orientations. The predicted results were in reasonably good agreement with the experiments. Both experimental and modeling approaches used in this study are highly valuable for designing aerospace composites for harsh in-service loading conditions.

Funder

Khalifa University of Science, Technology and Research

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3