Author:
Yan Bijuan,Liang Huijun,Jin Minjie,Li Zhanlong,Song Yong
Abstract
Purpose
In the vibration reduction field, constrained stand-off layer damping cylindrical shell plays an important role. However, due to the lack of accurate analysis of its damping characteristics, this hinders its further research and application. Therefore, the purpose of this paper is concerned with an accurate solution for the vibration-damping characteristics of a constrained stand-off-layer damping cylindrical shell (CSDCS) under various classical boundary conditions and conducts a further analysis.
Design/methodology/approach
Based on the Rayleigh–Ritz method and the Hamilton principle, a dynamic model of CSDCS is established. Then the loss factor and the frequency of CSDCS are obtained. The correctness and convergence behavior of the present model are verified by comparing the calculation results with the literature. By using for various classical boundary conditions without any special modifications in the solution procedure, the characteristics of CSDCS with S-S, C-C, C-S, C-F and S-F boundaries are discussed.
Findings
The Rayleigh–Ritz method is effective in handling the problem of CSDCS with different boundaries and an accurate solution is obtained. The boundary conditions have an important influence on the vibration and damping behavior of the CSDCS.
Originality/value
Based on the Rayleigh–Ritz method and Hamilton principle, a dynamic model of CSDCS is established for the first time, and then the loss factor and frequency of CSDCS are obtained. In addition, the effectiveness of adding the stand-off layer between the base shell and the viscoelastic layer is confirmed by discussing the characteristics of CSDCS with S-S, C-C, C-S, C-F and S-F boundaries.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献