Investigation on Free Vibration of Rotating Cylindrical Shells with Variable Thickness

Author:

Xiangdong Liu1,Xiaoli Hou1,Bin Bai2ORCID,Maolin Zeng1

Affiliation:

1. Hunan Sany Polytechnic College, Changsha 410000, China

2. Hunan First Normal University, School of Intelligent Manufacturing, Changsha 410000, China

Abstract

In order to improve the performance and efficiency of the rotating cylindrical shell (RCS), one of the effective ways reduces the mass of the RCS. The scientific and effective method is to design the variable thickness of RCS (VTRCS) along the axial direction in response to this demand. Then, the vibration traveling wave characteristics of VTRCS are investigated by Chebyshev–Ritz method. The displacement field of the cylindrical shell is expanded in the form of the product of the Chebyshev polynomial and the boundary function. The kinetic and potential energies of the VTRCS are calculated based on the Sanders shell theory considering the effects of Coriolis forces and centrifugal forces. Also, the frequency equation of the VTRCS is obtained according to the Ritz method. The accuracy of the modeling method is verified by comparing the present results with literature that had done, and the convergence of the calculated results is studied. Finally, the free-vibration traveling wave characteristics of the VTRCS in different thickness variations are compared, and the parameters such as the rotational speed, thickness variation parameters, and aspect ratio on the free-vibration traveling wave characteristics of the VTRCS are discussed. The influence of thickness variation on the vibration characteristics is analyzed, which has significance for the lightweight design for VTRCS.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wave propagation characteristics in a rotating soft cylinder;International Journal of Solids and Structures;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3