Topology optimization of partial constrained layer damping treatment on plate for maximizing modal loss factors

Author:

Chen Rong123,Luo Haitao12ORCID,Wang Hongguang12,Zhou Weijia12

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

2. Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China

3. University of Chinese Academy of Sciences, Beijing, China

Abstract

Constrained layer damping treatment is widely used to suppress the vibration and noise of thin-walled structures. However, full coverage of constrained damping layer will increase unnecessary additional mass, resulting in material waste and cannot effectively improve the damping performance of the composite structure. In this article, a topology optimization approach is proposed to realize the optimal distribution of constrained damping layer. The design objective is to maximize modal loss factors solved by the modal strain energy method under the constraint of volume. Taking the relative density of the finite element of the constrained damping layer as design variable, the solid isotropic material with penalization method is used to realize the optimal topological distribution of the damping material on the surface of the metal substrate. Then the moving asymptote method is adopted as an optimizer to search the optimal layout of the constrained damping layer. Based on a modified modal superposition method, the sensitivities of the objective function with respect to the design variables are obtained. Numerical examples and experiments are presented for illustrating the validity and efficiency of this approach. The results show that the objective function converges to the optimal value smoothly, and the optimized modal loss factors have been significantly improved. The layouts of the constrained damping layer after optimization are clear and reasonable, and its distributions are affected by both the damping layer and the constraining layer. Each part of the constrained damping layer after optimizing can greatly improve the damping performance of the structure.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

SAGE Publications

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3