Study on the fluid‐structure interaction of flexible printed circuit board motherboard in personal computer casings

Author:

Chiat Leong Wei,Zulkifly Abdullah Mohd,Yee Khor Chu,Ramdan Dadan

Abstract

PurposeThe flexible printed circuit board (FPCB) can be an alternative to the rigid printed circuit board because of its excellent flexibility, twistability, and light weight. Using FPCB to construct personal computer (PC) motherboard is still rare. Therefore, the present study aims to investigate the fluid‐structure interaction (FSI) behaviors of the newly proposed FPCB motherboard under fan‐flow condition in the PC casings.Design/methodology/approachThe deflection and stress induced, which are usually ignored in the traditional rigid motherboard, are the main concern in the current FPCB motherboard studies. Only a few studies have been conducted on the effect of inlet locations, effect of inlet sizes, effect of multi‐inlets, and effect of a two‐fan system. These numerical analyses are performed using the fluid flow solver FLUENT and the structural solver ABAQUS; they are real‐time online coupled by Mesh‐based Parallel Code Coupling Interface (MpCCI).FindingsA smaller inlet size can cause higher deflection and stress fluctuations, but the fluctuations can be reduced by incorporating the multi‐inlets design. In addition, the inlet locations and two‐fan system can prominently affect the magnitudes of the deflection and stress induced.Practical implicationsThe current study provides better understanding and allows designers to be aware of the FSI phenomenon when dealing with the FPCB motherboard. Although the present study primarily focuses on the motherboard, the findings could also contribute valuable information for other FPCB applications.Originality/valueThe present study extends the FSI investigation from the previous novel approach of FPCB motherboard, and uniquely explores the behaviors of the FPCB motherboard inside different PC casings.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3