A calculation procedure with multi‐block iteration and moving mesh for heat and fluid flows in complex time‐dependent geometries

Author:

Lai H.,Yan Y.Y.,Smith J.M.

Abstract

A calculation procedure is proposed for heat and fluid flows in geometries with a time‐dependent boundary. The procedure incorporates a moving mesh arrangement with multi‐block iteration and has been developed to assist future simulations of heat and mass transfer with phase change. The solver for the basic equations is the SIMPLE algorithm with a non‐staggered grid arrangement. The space conservation law is invoked and applied for the explicit tracking of a moving boundary with a moving mesh. For mapping complex geometries a multi‐block iteration strategy is employed. A cubic spline interpolation allows the “uniqueness of zonal boundary” requirement to be met. An interpolation method is also developed for variables near the zone boundaries.The calculation procedure using multi‐block iteration and a moving mesh is applied to three benchmark‐testing problems. The numerical results are in very good general agreement with available experimental data.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation of two-phase reactive flow with moving boundary;International Journal of Numerical Methods for Heat & Fluid Flow;2013-10-28

2. A pressure‐correction procedure with high‐order schemes implemented on unstructured meshes;International Journal of Numerical Methods for Heat & Fluid Flow;2011-04-19

3. Effect of cross-stream buoyancy and rotation on the free-stream flow and heat transfer across a cylinder;International Journal of Thermal Sciences;2010-10

4. Numerical simulation of time‐dependent heat and fluid flows inside and around single rising bubbles using a moving axisymmetric boundary‐fitted mesh system;International Journal of Numerical Methods for Heat & Fluid Flow;2007-05-22

5. Heat transfer—a review of 2002 literature;International Journal of Heat and Mass Transfer;2005-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3