A pressure‐correction procedure with high‐order schemes implemented on unstructured meshes

Author:

Lai Huanxin,Xing Gailan,Tu Shantong,Zhao Ling

Abstract

PurposeThe purpose of this paper is to present a pressure‐correction procedure for incompressible flows using unstructured meshes. A method of implementing high‐order spatial schemes on unstructured grids was introduced.Design/methodology/approachThe procedure used a collocated cell‐centered unstructured grid arrangement. In order to improve the accuracy of calculation, the widely used high‐order schemes for convection, developed for structured grids and in the form of either the normalized variable and space formulation (NVSF) or the total variation diminishing (TVD) flux limiters (FL), were introduced and implemented onto the unstructured grids. This implementation was carried out by constructing a local coordinate and introducing a virtual upstream node.FindingsThe procedure was validated by calculating the lid‐driven cavity flows which had benchmark numerical solutions. For comparison, these flows were also computed by a commercial package, the FLUENT. The results obtained by the present procedure agreed well with the benchmark solution although very coarse grids were used. For the FLUENT, however, worse agreements with the benchmark solutions were obtained although the grids used for computation were the same. These demonstrated the robustness of the presented numerical procedure.Originality/valueWith the present method, high‐order schemes in either NVSF or TVD FL forms for structured grids can be easily implemented onto unstructured grids. This provides more choices of high‐order schemes for calculating complex flows.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate marine propellers flow field CFD through anisotropic mesh optimization;International Journal of Numerical Methods for Heat & Fluid Flow;2019-09-02

2. Improved wall boundary conditions in the incompressible smoothed particle hydrodynamics method;International Journal of Numerical Methods for Heat & Fluid Flow;2018-03-05

3. Forced convection heat transfer within a moderately‐stenosed, patient‐specific carotid bifurcation;International Journal of Numerical Methods for Heat & Fluid Flow;2012-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3