Numerical simulation of two-phase reactive flow with moving boundary

Author:

Cheng Cheng,Zhang Xiaobing

Abstract

Purpose – In computational fluid dynamics for two-phase reactive flow of interior ballistic, the conventional schemes (MacCormack method, etc.) are known to introduce unphysical oscillations in the region where the gradient is high. This paper aims to improve the ability to capture the complex shock wave during the interior ballistic cycle. Design/methodology/approach – A two-phase flow model is established to describe the complex physical process based on a modified two-fluid theory. The solution of model is obtained including the following key methods: an approximate Riemann solver to construct upwind fluxes, the MUSCL extension to achieve high-order accuracy, a splitting approach to solve source terms, a self-adapting method to expand the computational domain for projectile motion and a control volume conservation method for the moving boundary. Findings – The paper is devoted to applying a high-resolution numerical method to simulate a transient two-phase reactive flow with moving boundary in guns. Several verification tests demonstrate the accuracy and reliability of this approach. Simulation of two-phase reaction flow with a projectile motion in a large-caliber gun shows an excellent agreement between numerical simulation and experimental measurements. Practical implications – This paper has implications for improving the ability to capture the complex physics phenomena of two-phase flow during interior ballistic cycle and predict the combustion details, such as the flame spreading, the formation of pressure waves and so on. Originality/value – This approach is reliable as a prediction tool for the understanding of the physical phenomenon and can therefore be used as an assessment tool for future interior ballistics studies.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3