Author:
Koziel Slawomir,Pietrenko-Dabrowska Anna
Abstract
Purpose
This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is demonstrated through a two-objective optimization of a planar Yagi antenna and three-objective design of a compact wideband antenna.
Design/methodology/approach
The keystone of the proposed approach is the usage of recently introduced nested kriging modeling for identifying the design space region containing the Pareto front and constructing fast surrogate model for the MO algorithm. Surrogate-assisted design refinement is applied to improve the accuracy of Pareto set determination. Consequently, the Pareto set is obtained cost-efficiently, even though the optimization process uses solely high-fidelity electromagnetic (EM) analysis.
Findings
The optimization cost is dramatically reduced for the proposed framework as compared to other state-of-the-art frameworks. The initial Pareto set is identified more precisely (its span is wider and of better quality), which is a result of a considerably smaller domain of the nested kriging model and better predictive power of the surrogate.
Research limitations/implications
The proposed technique can be generalized to accommodate low- and high-fidelity EM simulations in a straightforward manner. The future work will incorporate variable-fidelity simulations to further reduce the cost of the training data acquisition.
Originality/value
The fast MO optimization procedure with the use of the nested kriging modeling technology for approximation of the Pareto set has been proposed and its superiority over state-of-the-art surrogate-assisted procedures has been proved. To the best of the authors’ knowledge, this approach to multi-objective antenna optimization is novel and enables obtaining optimal designs cost-effectively even in relatively high-dimensional spaces (considering typical antenna design setups) within wide parameter ranges.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Reference46 articles.
1. A parallel surrogate model assisted evolutionary algorithm for electromagnetic design optimization;IEEE Transactions on Emerging Topics in Computational Intelligence,2019
2. Compact UWB monopole antenna for automotive communications;IEEE Transactions on Antennas and Propagation,2015
3. A kriging-assisted light beam search method for multi-objective electromagnetic inverse problems;Transactions on Magnetics,2018
4. Power allocation in multibeam satellite systems: a two-stage multi-objective optimization;IEEE Transactions on Wireless Communications,2015
5. PEEC-based multi-objective synthesis of non-uniformly spaced linear antenna arrays;IEEE Transactions on Magnetics,2017
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献