On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features

Author:

Koziel Slawomir12ORCID,Pietrenko-Dabrowska Anna21ORCID,Pankiewicz Bogdan2ORCID

Affiliation:

1. Engineering Optimization & Modeling Center, Reykjavik University, 102 Reykjavik, Iceland

2. Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland

Abstract

Development of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be resource-intensive in terms of computing due to involving full-wave electromagnetic (EM) simulations. The cost-related issues are particularly pronounced whenever global optimization is necessary, typically carried out using nature-inspired algorithms. Although capable of escaping from local optima, population-based algorithms exhibit poor computational efficiency, to the extent of being hardly feasible when directly handling EM simulation models. A popular mitigation approach involves surrogate modeling techniques, facilitating the search process by replacing costly EM analyses with a fast metamodel. Yet, surrogate-assisted procedures feature complex implementations, and their range of applicability is limited in terms of design space dimensionality that can be efficiently handled. Rendering reliable surrogates is additionally encumbered by highly nonlinear antenna characteristics. This paper investigates potential benefits of employing problem-relevant knowledge in the form of response features into nature-inspired antenna optimization. As demonstrated in the recent literature, re-formulating the design task with the use of appropriately selected characteristic locations of the antenna responses permits flattening the functional landscape of the objective function, leading to faster convergence of optimization procedures. Here, we apply this concept to nature-inspired global optimization of multi-band antenna structures, and demonstrate its relevance, both in terms of accelerating the search process but also improving its reliability. The advantages of feature-based nature-inspired optimization are corroborated through comprehensive (based on three antenna structures) comparisons with a population-based search involving conventional (e.g., minimax) design problem formulation.

Funder

Icelandic Centre for Research

National Science Centre of Poland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3