High-efficacy global optimization of antenna structures by means of simplex-based predictors

Author:

Koziel Slawomir,Pietrenko-Dabrowska Anna

Abstract

AbstractDesign of modern antenna systems has become highly dependent on computational tools, especially full-wave electromagnetic (EM) simulation models. EM analysis is capable of yielding accurate representation of antenna characteristics at the expense of considerable evaluation time. Consequently, execution of simulation-driven design procedures (optimization, statistical analysis, multi-criterial design) is severely hindered by the accumulated cost of multiple antenna evaluations. This problem is especially pronounced in the case of global search, frequently performed using nature-inspired algorithms, known for poor computational efficiency. At the same time, global optimization is often required, either due to multimodality of the design task or the lack of sufficiently good starting point. A workaround is to combine metaheuristics with surrogate modeling methods, yet a construction of reliable metamodels over broad ranges of antenna parameters is challenging. This work introduces a novel procedure for global optimization of antenna structures. Our methodology involves a simplex-based automated search performed at the level of approximated operating and performance figures of the structure at hand. The presented approach capitalizes on weakly-nonlinear dependence between the operating figures and antenna geometry parameters, as well as computationally cheap design updates, only requiring a single EM analysis per iteration. Formal convergence of the algorithm is guaranteed by implementing the automated decision-making procedure for reducing the simplex size upon detecting the lack of objective function improvement. The global optimization stage is succeeded by gradient-based parameter refinement. The proposed procedure has been validated using four microstrip antenna structures. Multiple independent runs and statistical analysis of the results have been carried out in order to corroborate global search capability. Satisfactory outcome obtained for all instances, and low average computational cost of only 120 EM antenna simulations, demonstrate superior efficacy of our algorithm, also in comparison with both local optimizers and nature-inspired procedures.

Funder

Icelandic Centre for Research

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3