A STUDY OF THE HYDROELASTIC STABILITY OF A COMPLIANT PANEL USING NUMERICAL METHODS

Author:

LUCEY ANTHONY D.,CARPENTER PETER W.

Abstract

A numerical method is developed which can simulate the interaction between a finite compliant panel and an unsteady potential flow. A boundary‐element technique yields the flow solution whilst finite‐differences are used to solve the wall dynamics; these are then coupled to generate a fully interactive wall/flow system. Thus, the evolution of any wall disturbance can be followed. Parallel computing is appropriately employed and a stability investigation of a realistic compliant panel is carried out. Three‐dimensional flexural waves are found below a critical flow speed whilst beyond this threshold, essentially two‐dimensional unstable divergence waves are found. The form of divergence shows good agreement with that seen in experimental studies. The versatility of this new method will permit the investigation of a wide variety of single‐ and multi‐panel configurations subject to different forms of excitation.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The excitation of waves on a flexible panel in a uniform flow;Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences;1998-12-15

2. Hydroelastic instability threshold in a turbulent boundary layer over a compliant coating;Physics of Fluids;1998-02

3. THE NONLINEAR HYDROELASTIC BEHAVIOUR OF FLEXIBLE WALLS;Journal of Fluids and Structures;1997-10

4. Boundary layer instability over compliant walls: Comparison between theory and experiment;Physics of Fluids;1995-10

5. Optimization of viscoelastic compliant walls for transition delay;AIAA Journal;1994-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3