The stability of boundary-layer flow over single-and multi-layer viscoelastic walls

Author:

Yeo K. S.

Abstract

In this paper, we are concerned with the linear stability of zero pressure-gradient laminar boundary-layer flow over compliant walls which are composed of one or more layers of isotropic viscoelastic materials and backed by a rigid base. Wall compliance supports a whole host of new instabilities in addition to the Tollmien-Schlichting mode of instability, which originally exists even when the wall is rigid. The perturbations in the flow and the compliant wall are coupled at their common interface through the kinematic condition of velocity continuity and the dynamical condition of stress continuity. The disturbance modes in the flow are governed by the Orr-Sommerfeld equation using the locally-parallel flow assumption, and the response of the compliant layers is described using a displacement-stress formalism. The theoretical treatment provides a unified formulation of the stability eigenvalue problem that is applicable to compliant walls having any finite number of uniform layers; inclusive of viscous sublayer. The formulation is well suited to systematic numerical implementation. Results for single- and multi-layer walls are presented. Analyses of the eigenfunctions give an insight into some of the physics involved. Multi-layering gives a measure of control over the stability characteristics of compliant walls not available to single-layer walls. The present study provides evidence which suggests that substantial suppression of disturbance growth may be possible for suitably tailored compliant walls.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. Gyorgyfalvy, D. 1967 Possibilities of drag reduction by the use of flexible skin.J. Aircraft 4,186.

2. Kaplan, R. E. 1964 The stability of laminar boundary layers in the presence of compliant boundaries. ScD thesis,MIT.

3. Benjamin, T. B. 1964 Fluid flow with flexible boundaries. In Proc. 11th Intl Congr. Appl. Mech., Munich, Germany , p. 109.

4. Kramer, M. O. 1957 Boundary-layer stabilization by distributed damping.J. Aero Sci. 24,459.

5. Bers, A. & Briggs, R. J. 1964 Bull. Am. Phys. Soc. 9,304.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3