The hydrodynamic stability of boundary-layer flow over a class of anisotropic compliant walls

Author:

Yeo K. S.

Abstract

This paper examines the linear stability of zero-pressure-gradient boundary-layer flow over a class of anisotropically responding compliant walls. The anisotropic wall behaviour is derived from a material anisotropy which is characterized by relatively high tensile and compressive strength along a certain direction, termed the fibre axis. When the material stiffness along the fibre axis is sufficiently high, the resulting correlation between the horizontal and the vertical components of wall displacement induces at the flow–wall interface a Reynolds shear stress of a sign that is predetermined by the angle with which the fibre axis makes with the direction of the flow. The notion that anisotropic surface response could be employed to produce turbulent Reynolds shear stresses of predetermined sign at a surface was first explored by Grosskreutz (1971) in an experimental study on turbulent drag reduction. The present paper examines the implications of this interesting idea in the context of two-dimensional flow stability over anisotropic compliant walls. The study covers single- and two-layer compliant walls using the methodology described in Yeo (1988). The effects of wall anisotropy, as determined by the orientation of the fibre axis and the material stiffness along the fibre axis, on flow stability are examined for a variety of walls. The potential of some anisotropic compliant walls for delaying laminar–turbulent transition is investigated, and the contribution of the anisotropy to transition delay is appraised.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3