Mechanical drilling of PCB micro hole and its application in micro ultrasonic powder molding

Author:

Liang Xiong,Li Bing,Fu Lianyu,Wu Xiaoyu,Shi Hongyan,Peng Taijiang,Xu Bin

Abstract

Purpose – This paper aims to present the main factors affecting the mechanical drilling of the printed circuit board (PCB for short) micro-holes and method of micro-ultrasonic powder molding (micro-UPM for short) by utilizing PCB micro-hole array. Design/methodology/approach – To optimize the drilling process, the paper proposes the on-line monitoring methods for the drilling process including drilling force, drilling temperature, high-speed photography and vibration signals. Taking 0.10 and 0.15 mm micro-drilling as examples, the paper analyzes the drilling process of ultra-small micro-holes. Finally, by taking the PCBs with 0.10 and 0.15 mm micro-hole arrays as the micro-cavity inserts, utilizing ultra-high-molecule weight polyethylene powder with the average particle size of about 150 μm as raw material, two sizes of micro-cylinder array polymer parts are fabricated through micro-UPM process. Findings – PCB micro-cavity inserts with micro-hole arrays fabricated by mechanical drilling has the advantages of low costs, high efficiency and good consistency. Taking 0.10 and 0.15 mm micro-drilling as examples, it is found that the both measured apertures are about 10.0 μm more than the diameter of the micro-drill bits on average. The average diameter of the micro-cylinders by micro-UPM process is smaller than that of the micro-hole with the same specification, while the value of the roughness of the cylinder surface is more than that of the hole-wall surface with the same specification. Originality/value – This paper describes the challenges and the developments of mechanical drilling and by using PCB micro-cavity inserts with micro-hole arrays fabricated by mechanical drilling, two different micro-cylinder array polymer parts are successfully made and thus the application area of PCB micro-drilling is broadened.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3