Algorithmic equity in the hiring of underrepresented IT job candidates

Author:

Yarger LynetteORCID,Cobb Payton Fay,Neupane Bikalpa

Abstract

Purpose The purpose of this paper is to offer a critical analysis of talent acquisition software and its potential for fostering equity in the hiring process for underrepresented IT professionals. The under-representation of women, African-American and Latinx professionals in the IT workforce is a longstanding issue that contributes to and is impacted by algorithmic bias. Design/methodology/approach Sources of algorithmic bias in talent acquisition software are presented. Feminist design thinking is presented as a theoretical lens for mitigating algorithmic bias. Findings Data are just one tool for recruiters to use; human expertise is still necessary. Even well-intentioned algorithms are not neutral and should be audited for morally and legally unacceptable decisions. Feminist design thinking provides a theoretical framework for considering equity in the hiring decisions made by talent acquisition systems and their users. Social implications This research implies that algorithms may serve to codify deep-seated biases, making IT work environments just as homogeneous as they are currently. If bias exists in talent acquisition software, the potential for propagating inequity and harm is far more significant and widespread due to the homogeneity of the specialists creating artificial intelligence (AI) systems. Originality/value This work uses equity as a central concept for considering algorithmic bias in talent acquisition. Feminist design thinking provides a framework for fostering a richer understanding of what fairness means and evaluating how AI software might impact marginalized populations.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference73 articles.

1. Applicant and recruiter reactions to new technology in selection: a critical review and agenda for future research;International Journal of Selection and Assessment,2003

2. Angwin, J., Larson, J., Mattu, S. and Kirchner, L. (2017), “Machine bias”, available at: www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (accessed December 3, 2017).

3. Atlassian (2018), “State of diversity and inclusion in US tech: stats summary”, available at: www.atlassian.com/diversity/survey/2018 (accessed October 30, 2018).

4. Feminist HCI: taking stock and outlining an agenda for design,2010

5. Big data’s disparate impact;California Law Review,2016

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3