Reliability assessment of electronic assemblies under vibration by statistical factorial analysis approach

Author:

Gharaibeh Mohammad

Abstract

Purpose This paper aims to present a reliability performance assessment of electronic packages subjected to harmonic vibration loadings by using a statistical factorial analysis technique. The effects of various geometric parameters, the size and thickness of the printed circuit board and component and solder interconnect dimensions on the fundamental resonant frequency of the assembly and the axial strain of the most critical solder joint were thoroughly investigated. Design/methodology/approach A previously published analytical solution for the problem of electronic assembly vibration was adopted. This solution was modified and used to generate the natural frequency and solder axial strains data for various package geometries. Statistical factorial analysis was used to analyze these data. Findings The results of the present study showed that the reliability of electronic packages under vibration could be significantly enhanced by selecting larger and thicker printed circuit boards and thinner and smaller electrical components. Additionally, taller and thinner solders might also produce better reliability behavior. Originality/value The results of this investigation can be very useful in the design process of electronic products in mechanical vibration environments.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Reference35 articles.

1. Board level energy correlation and interconnect reliability modeling under drop impact,2009

2. Vibration analysis of a simply supported PCB with a component-an analytical approach,2008

3. Structure analysis for circuit card system subject to bending;Journal of Electronic Packaging,1990

4. Comparison of electronic component durability under uniaxial and multiaxial random vibrations;Journal of Electronic Packaging,2015

5. Optimization of fins used in electronic packaging;Microelectronics International,2005

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3