Experimental analysis of I‐V and C‐V characteristics of Ni/SiO2/4H‐SiC system with varying oxide thickness

Author:

Gupta Sanjeev K.,Azam A.,Akhtar J.

Abstract

PurposeThe purpose of this paper is to electrically examine the quality of thin thermally grown SiO2 with thickness variation, on Si‐face of 4H‐SiC <0001> (having 50 μm epitaxial layer) by current‐voltage (I‐V) and capacitance‐voltage (C‐V) methods.Design/methodology/approachMetal‐oxide‐silicon carbide (MOSiC) structures with varying oxide thickness have been fabricated on device grade 4H‐SiC substrate. Ni has been used for gate metal on thermally oxidized Si‐face and a composite layer of Ti‐Au has been used for Ohmic contact on the highly doped C‐face of the substrate. Each structure was diced and bonded on a TO‐8 header with a suitable wire bonding for further testing using in‐house developed LabVIEW‐based computer aided measurement setup.FindingsThe leakage current of fabricated structures shows an asymmetric behavior with the polarity of gate bias ( + V or −V at the anode). A strong relation of oxide thickness and temperature on effective barrier height at SiO2/4H‐SiC interface as well as on oxide charges have been established and reported in this paper.Originality/valueThe paper focuses on the development of 4H‐SiC based device technology in the fabrication of MOSiC‐based integrated structures.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3