Author:
Xiong Xiaoshuang,Hua Lin,Wan Xiaojin,Yang Can,Xie Chongyang,He Dong
Abstract
Purpose
The purposes of this paper include studying the friction coefficient of polyoxymethylene (POM) under a broad range of normal load and sliding velocity; developing a mathematical model of friction coefficient of POM under a broad range of normal loads and sliding velocities; and applying the model to dynamic finite element (FE) analysis of mechanical devices containing POM components.
Design/methodology/approach
Through pin-on-disc experiment, the friction coefficient of POM in different normal loads and sliding velocities is investigated; the average contact pressure is between 5 and 15 Mpa and the sliding velocity is from 0.05 to 0.9 m/s. A friction algorithm is developed and embedded in the FE model to simulate the friction of POM in different normal loads and sliding velocities.
Findings
The friction coefficient of POM against steel declines with the increase of normal loads when the contact pressure is between 5 and 15 Mpa. The friction coefficient of POM against steel increases markedly when the sliding velocity is between 0.05 and 0.15 m/s, it decreases sharply between 0.15-0.45 m/s and then it stabilizes at high sliding velocity between 0.45 and 0.9 m/s. The friction coefficient of POM in different working operations has a significant effect on contact stress and shear stress. The simulation data and experiment data of POM friction force fit very well; therefore, it can be concluded that the friction algorithm and FE model are accurate.
Originality/value
The friction coefficient of POM under a broad range of normal loads and sliding velocities is investigated. The friction coefficient model of POM is established as a function of normal loads and sliding velocities in the dry sliding condition. A friction algorithm is developed and embedded in the FE model of the friction of POM. The mathematical model of the friction coefficient accurately agrees with the experiment data, and simulation data and experiment data of the POM friction force fit very well.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献