In Situ Synthesis and Tribological Characterization of TiC–Diamond Composites: Effect of the Counterface Material on Wear Rate and Mechanism

Author:

Chen Yuqi1,Li Jin1ORCID,Li Liang1ORCID,Han Ming2ORCID,He Junbao1

Affiliation:

1. School of Mechatronics Engineering, Nanyang Normal University, Nanyang 473061, China

2. Henan Building Materials Research and Design Institute Co., Ltd., Henan Academy of Sciences, Zhengzhou 473061, China

Abstract

TiC bonded diamond composites were prepared from a mixture of Ti, graphite, and diamond powders as raw materials, with Si as sintering additives, through high-temperature and high-pressure (HTHP) technology. The reaction between Ti and graphite under 4.5–5 GPa pressure and 1.7–2.3 kW output power can produce TiC as the main phase. The diamond particles are surrounded by TiC, and the interface is firmly bonded. The coefficient of friction (COF) of TiC–diamond composites with POM and PP balls decreases with increasing load for a specific friction velocity. However, the COF of TiC–diamond composites with agate, Cu and Al balls increases with the rising load because of the enhanced adhesive wear effect. The COF of PP, Cu and Al balls slightly increases with the increase in friction velocity at a certain load. SEM results show that the surface of agate balls has rough, pear-shaped grooves and shallow scratches. The scratches on the surface of POM balls are wrinkled. The PP balls have pear-shaped groove scratches on their wear surfaces. The wear mechanism of TiC–diamond composites with Cu ball pairs is primarily adhesive wear. The abrasion of TiC–diamond composites with Cu ball pairs remains almost unchanged as the load increases. However, the depth and width of the pear-shaped grooves on the wear surface of TiC–diamond composites are significantly increased. This phenomenon may be attributed to the high rotational speed, which helps to remove the residual abrasive debris from the friction grooves. As a result, there is a decrease in both the depth and width of the pear-shaped grooves, leading to a smoother overall surface. The wear mechanism of TiC–diamond composites with Al ball pairs is abrasive wear, which increases with an increasing load. When the load is constant, as the speed increases, the wear morphology of TiC–diamond composites with Al ball pairs transitions from rough to smooth and then back to rough again. This phenomenon may be attributed to the wear mechanism at low speeds being groove wear and adhesive wear. As the speed increases, the wear particles are more easily removed from the wear track, leading to a reduction in abrasiveness. As the speed increases, the wear surface becomes roughened by a combination of grooves and dispersed wear debris. This can be attributed to the increased dynamic interaction between surfaces caused by higher speed, resulting in a combination of abrasive and adhesive wear. In addition, Cu and Al ball wear debris appeared as irregular particles that permeated and adhered to the surface of the TiC phase among the diamond particles. The results suggest that TiC–diamond composites are a very promising friction material.

Funder

Science and Technology Open Cooperation Project of Henan Academy of Sciences

Youth Fund Project of Natural Science Foundation of Henan Province

Doctoral Special Fund Project of Nanyang Normal College

Cultivation Project of National Natural Science Foundation of Nanyang Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3