Preparation of Ti3Si0.8Al0.2C2 Bonded Diamond Composites and Their Friction Properties Coupled with Different Counterfaces

Author:

Yuqi Chen12,Liang Li1ORCID,Shibang Ma1,Chao Li13,Songhao Zheng1,Wucheng Lv1,Libo Wang4,Aiguo Zhou4,Xing Wang1ORCID

Affiliation:

1. School of Mechatronics Engineering, Nanyang Normal University, Nanyang, Henan 473061, China

2. School of Materials Science and Engineering, Shanghai Dian Ji University, Shanghai 201306, China

3. Henan Intelligent Manufacturing Engineering Research Center for Vehicle Parts, Nanyang Normal University, Nanyang, Henan 473061, China

4. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China

Abstract

Polycrystalline diamonds were sintered with the binder of Ti3Si0.8Al0.2C2 to solve the shortcomings of conventional metal binders and ceramic binders. Ti3Si0.8Al0.2C2 bonded polycrystalline diamond composites have been synthesized from a mixture of Ti3Si0.8Al0.2C2 powder (40 wt%) and diamond powder under 4.5–5.5 GPa at 1050–1300°C by high press and high-temperature technology. The characteristic peaks of TiC were observed at 4.5 GPa and above 1100°C. From the microstructure analysis, the diamond particles are equally dispersed throughout the Ti3Si0.8Al0.2C2 matrix and firmly bound to the matrix. The effects of the sintering conditions, test parameters, and counterparts on the friction properties of diamond composites were systematically analyzed. The friction coefficient between diamond composite and glass counterpart is between 0.18 and 0.33 and increases significantly at the speed of 400 rpm/min. SEM and EDS analysis show Ti3Si0.8Al0.2C2 has a strong holding force on the diamond particles. The wear mechanism is mainly abrasive, and there are obvious grooves on the surface of the glass ball. The friction coefficient of diamond composite sintered at 1050°C with POM decreases monotonically with increasing load and reaches the minimum value of 0.42 at 12 N. The higher sintering temperature (1150°C) resulted in lower friction coefficient for diamond/POM pairs. The friction coefficient of diamond/PP pairs decreases first and then increases with increasing load, reaching a minimum value of 0.431 at 10 N. The wear mechanism of PP and POM is a combination of abrasive wear and adhesive wear, while the abrasive chips of POM are small salt-like particles and the abrasive chips of PP are long flocs. The wear track of PP balls has a smoother surface than that of POM balls. For an Al pair, the friction coefficient of diamond composite sintered at 1150°C is higher than that of the composite sintered at 1050°C except for the 10 N load. The friction coefficient of the diamond composites with Cu pairs varies slightly with increasing load, with values ranging from 0.443 to 0.518 and decreases with increasing speed, reaching a minimum value of 0.396 at 600 rpm/min. The wear mechanism of Cu and Al is mainly based on adhesive wear. The presence of the diamond second phase improves the stability of Ti3Si0.8Al0.2C2 compared to the high-pressure treatment of single phase Ti3SiC2. The analysis of friction properties indicates that Ti3Si0.8Al0.2C2 bonded diamond composites are promising candidates for superhard tool materials.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3