What makes a helpful online review? Empirical evidence on the effects of review and reviewer characteristics

Author:

Luo Lijuan,Duan SiqiORCID,Shang ShanshanORCID,Pan Yu

Abstract

PurposeThe reviews submitted by users are the foundation of user-generated content (UGC) platforms. However, the rapid growth of users brings the problems of information overload and spotty content, which makes it necessary for UGC platforms to screen out reviews that are really helpful to users. The authors put forward in this paper the factors influencing review helpfulness voting from the perspective of review characteristics and reviewer characteristics.Design/methodology/approachThis study uses 8,953 reviews from 20 movies listed on Douban.com with variables focusing on review characteristics and reviewer characteristics that affect review helpfulness. To verify the six hypotheses proposed in the study, Stata 14 was used to perform tobit regression.FindingsFindings show that review helpfulness is significantly influenced by the length, valence, timeliness and deviation rating of the reviews. The results also underlie that a review submitted by a reviewer who has more followers and experience is more affected by review characteristics.Originality/valuePrevious literature has discussed the factors that affect the helpfulness of reviews; however, the authors have established a new model that explores more comprehensive review characteristics and the moderating effect reviewer characteristics have on helpfulness. In this empirical research, the authors selected a UGC community in China as the research object. The UGC community may encourage users to write more helpful reviews by highlighting the characteristics of users. Users in return can use this to establish his/her image in the community. Future research can explore more variables related to users.Peer reviewThe peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-05-2020-0186.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3