Development and characterization of a high-sensitivity fiber Bragg grating-based vibrating nano-probe for 3D measurement

Author:

Liu Fangfang,Wang Jingfan,Chen Lijuan,Li Ruijun,Xia Haojie,Yu Liandong

Abstract

Purpose There is an increasing demand for higher-accuracy dimensional measurements of nano- and micro-structures. Recently, the authors presented a fiber Bragg grating (FBG) sensor-based dynamic nano-coordinate-measuring machine (CMM) probe for true three-dimensional coordinate measurement, in which a specific mechanical structure with several FBG sensors was developed to provide the probe with sensitivity to loading in all directions. Design/methodology/approach The study presents a three-dimensional sensing and demodulation system based on an improved matched filter design and the time division multiplexing technique that helps solve the problem of multiplex FBG-signals conflicts. In addition, the application of the dynamic mode of the probe system effectively solves the problem presented by the surface interaction forces. Findings Consequently, this FBG-based vibrating probe system has increased sensitivity to strain, while maintaining smaller contact force. The experiments for testing probe performance show that the prototype yielded a measurement resolution of 13 nm, a repeatability of 50 nm and a vertical measurement force of less than1.5 mN. Research limitations/implications The force tests in the horizontal directions are difficult to conduct because both the probe and the dynamometer are only adaptable to vertical use. Practical implications Development of the FBG-based dynamic nano-coordinate-measuring machine probe will achieve a new and inexpensive method for higher-accuracy dimensional measurements of nano- and micro-structures, such as micro-electromechanical systems, micro-fluidic chips, inkjet and diesel engine injector nozzles that are in overall dimensions within the micrometer scale. Originality/value The study presents a three-dimensional sensing and demodulation system for the vibrating nano-coordinate-measuring machine probe based on FBG sensors. The prototype yielded a measurement resolution of 13 nm, a repeatability of 50 nm and a vertical measurement force of less than1.5 mN.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference17 articles.

1. Adhesion forces reduction for micro manipulation based on micro physics,1996

2. Development of a low-cost nanoscale touch trigger probe based on two commercial DVD pick-up heads;Measurement Science and Technology,2007

3. Development of a three-dimensional vibrating tactile probe for miniature CMMs;Precision Engineering,2013

4. A vibrating micro-scale CMM probe for measuring high aspect ratio structures;Microsyst Technology,2010

5. A high precision micro/nano CMM using piezoresistive tactile probes;Measurement Science and Technology,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3