Effective e‐learning recommendation system based on self‐organizing maps and association mining

Author:

Wen‐Shung Tai David,Wu Hui‐Ju,Li Pi‐Hsiang

Abstract

PurposeThe purpose of this study is to propose a hybrid system to combine the self‐organizing map (SOM) of a neural network with the data‐mining (DM) method for course recommendation of the e‐learning system.Design/methodology/approachThis research constructs a hybrid system with artificial neural network (ANN) and data‐mining (DM) techniques. First, ANN is used to classify the e‐Learner types. Based on these e‐Learner groups, users can obtain course recommendation from the group's opinions. When groups of related interests have been established, the DM will be used to elicit the rules of the best learning path. It is ideal for this system to stimulate learners' motivation and interest. Moreover, the hybrid approach can be used as a reference when learners are choosing between classes.FindingsIn order to enhance the efficiency and capability of e‐learning systems, the SOM method is combined to deal with cluster problems of DM systems, SOM/DM for short. It was found that the SOM/DM method has excellent performance.Research limitations/implicationsThis research is limited by the fact that its participants are from a business college of a university in Taiwan, and it is applied by SOM/DM to recommend courses of e‐learners. This research is useful in the domain of the e‐learning system.Originality/valueThe results of this research will provide useful information for educators to classify their e‐learners or students more accurately, and to adapt their teaching strategies accordingly to retain valuable e‐learners subject to limited resources. The experiments prove that it is ideal to stimulate learners' motivation and interest.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3