Source Code Analysis in Programming Education: Evaluating Learning Content with Self-Organizing Maps

Author:

Jevtić Marko1ORCID,Mladenović Saša1ORCID,Granić Andrina1ORCID

Affiliation:

1. Faculty of Science, University of Split, Ulica Ruđera Boškovića 33, 21000 Split, Croatia

Abstract

Due to the everchanging and evergrowing nature of programming technologies, the gap between the programming industry’s needs and the educational capabilities of both formal and informal educational environments has never been wider. However, the need to learn computer programming has never been greater, regardless of the motivation behind it. The number of programming concepts to be taught is increasing over time, while the amount of time available for education and training usually remains the same. The objective of this research was to analyze the source codes used in many educational systems to teach fundamental programming concepts to learners, regardless of their prior experience in programming. A total of 25 repositories containing 3882 Python modules were collected for the analysis. Through self-organization of the collected content, we obtained very compelling results about code structure, distribution, and differences. Based on those results, we concluded that Self-Organizing Maps are a powerful tool for both content and knowledge management, because they can highlight problems in the curriculum’s density as well as transparently indicate which programming concepts it has successfully observed and learned to recognize. Based on the level of transparency exhibited by Self-Organizing Maps, it is safe to say that they could be used in future research to enhance both human and machine learning of computer programming. By achieving this level of transparency, such an Artificial Intelligence system would be able to assist in overall computer programming education by communicating what should be taught, what needs to be learned, and what is known.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3