Abstract
PurposeMost prior attempts at real estate valuation have focused on the use of metadata such as size and property age, neglecting the fact that the building workmanship in the construction of a house is also a key factor for the estimation of house prices. Building workmanship, such as exterior walls and floor tiling correspond to the visual attributes of a house, and it is difficult to capture and evaluate such attributes efficiently through classical models like regression analysis. Deep learning approach is taken in the valuation process to utilize this visual information.Design/methodology/approachThe authors propose a two-input neural network comprising a multilayer perceptron and a convolutional neural network that can utilize both metadata and the visual information from images of the front view of the house.FindingsThe authors applied the two-input neural network to Guri City in Gyeonggi Province, South Korea, as a case study and found that the accuracy of house price estimations can be improved by employing image information along with metadata.Originality/valueFew studies considered the impact of the building workmanship in the valuation process. The authors revealed that it is useful to use both photographs and metadata for enhancing the accuracy of house price estimation.
Subject
Library and Information Sciences,Information Systems
Reference37 articles.
1. Artificial neural network in property valuation: application framework and research trend;Property Management,2017
2. A review of real estate valuation and optimal pricing techniques;Asian Economic and Financial Review,2014
3. House price estimation from visual and textual features,2016
4. Mass appraisal: an introduction to multiple regression analysis for real estate valuation;Journal of Real Estate Practice and Education,2004
5. A critical review of literature on the hedonic price model;International Journal for Housing Science and its Applications,2003
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献