A FRAMEWORK TO INTEGRATE BIM WITH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING-BASED PROPERTY VALUATION METHODS

Author:

Jafary P.,Shojaei D.,Rajabifard A.,Ngo T.

Abstract

Abstract. Property valuation is of extreme importance since variations in the real estate market enormously influence people’s life. The main goal of Automated Valuation Models (AVMs) is to calculate the market value of a large number of properties with an acceptable accuracy. The Hedonic Price Model (HPM) is the most widely used AVM for the valuation purposes. Despite its simplicity, ease of use and straightforwardness, HPM lacks the capability to address the non-linear relationships between different value-related factors. Hence, researchers have developed other state-of-the-art property valuation methods based on the advancements in computer science including Artificial Intelligence (AI), Machine Learning (ML), computer vision and deep learning. Design, development, and validation of such advanced AVMs require establishment of a database including data on the different influential factors. Two types of factors are used in the literature, including textual and visual features. Reliable data sources are required for the implementation of AVMs since the accuracy of the provided valuations is definitely linked to the reliability of the used real estate databases. Building Information Modelling (BIM) provides precise information on different components of properties. Although some scholars have tried to use BIM for property valuation, BIM benefits in different valuation procedures have not been fully investigated. Hence, this paper provides a framework that consider BIM capabilities to be integrated with different stages and processes in property valuation, especially in relation to advanced AVMs based on AI and ML.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3