Abstract
Multi-modal data are widely available for online real estate listings. Announcements can contain various forms of data, including visual data and unstructured textual descriptions. Nonetheless, many traditional real estate pricing models rely solely on well-structured tabular features. This work investigates whether it is possible to improve the performance of the pricing model using additional unstructured data, namely images of the property and satellite images. We compare four models based on the type of input data they use: (1) tabular data only, (2) tabular data and property images, (3) tabular data and satellite images, and (4) tabular data and a combination of property and satellite images. In a supervised context, the branches of dedicated neural networks for each data type are fused (concatenated) to predict log rental prices. The novel dataset devised for the study (SRED) consists of 11,105 flat rentals advertised over the internet in Switzerland. The results reveal that using all three sources of data generally outperforms machine learning models built on only tabular information. The findings pave the way for further research on integrating other non-structured inputs, for instance, the textual descriptions of properties.
Subject
Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems
Reference50 articles.
1. Learning Transferable Visual Models from Natural Language Supervision;Radford;Proceedings of the 38th International Conference on Machine Learning, ICML 2021,2021
2. Analysis of Social Media Data using Multimodal Deep Learning for Disaster Response;Ofli;arXiv,2020
3. A survey on deep learning in medical image analysis
4. Multimodal Machine Learning: A Survey and Taxonomy
5. A survey of multi-view machine learning
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献