Author:
Nguyen Toan Van,Do Minh Hoang,Jo Jaewon
Abstract
Purpose
Collision avoidance is considered as a crucial issue in mobile robotic navigation to guarantee the safety of robots as well as working surroundings, especially for humans. Therefore, the position and velocity of obstacles appearing in the working space of the self-driving mobile robot should be observed to help the robot predict the collision and choose traversable directions. This paper aims to propose a new approach for obstacle tracking, dubbed MoDeT.
Design/methodology/approach
First, all long lines, such as walls, are extracted from the 2D-laser scan and considered as static obstacles (or mapped obstacles). Second, a density-based procedure is implemented to cluster nonwall obstacles. These clusters are then geometrically fitted as ellipses. Finally, the combination of Kalman filter and global nearest-neighbor (GNN) method is used to track obstacles’ position and velocity.
Findings
The proposed method (MoDeT) is experimentally verified by using an autonomous mobile robot (AMR) named AMR SR300. The MoDeT is found to provide better performance in comparison with previous methods for self-driving mobile robots.
Research limitations/implications
The robot can only see a part of the object, depending on the light detection and ranging scan view. As a consequence, geometrical features of the obstacle are sometimes changed, especially when the robot is moving fast.
Practical implications
This proposed method is to serve the navigation and path planning for the AMR.
Originality/value
(a) Proposing an extended weighted line extractor, (b) proposing a density-based obstacle detection and (c) implementing a combination of methods [in (a) and (b) constant acceleration Kalman and GNN] to obtain obstacles’ properties.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Reference32 articles.
1. Autonomous navigation and obstacle avoidance of an omnidirectional mobile robot using swarm optimization and sensors deployment;International Journal of Advanced Robotic Systems,2020
2. Traversable terrain classification outdoor autonomous robots using single 2D laser scans;Integrated Computer-Aided Engineering,2006
3. Obstacle detection using ultrasonic sensor for mobile robot,2019
4. Detection, classification and tracking of moving objects in a 3D environment,2012
5. Multi-sensor fusion for obstacle detection and recognition: a belief-based approach,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献