Obstacle Avoidance for Automated Guided Vehicles in Real-World Workshops Using the Grid Method and Deep Learning

Author:

Li Xiaogang1,Rao Wei1,Lu Dahui1,Guo Jianhua1,Guo Tianwen1,Andriukaitis Darius2ORCID,Li Zhixiong3ORCID

Affiliation:

1. Longyan Tobacco Industry Co., Ltd., Longyan 364021, China

2. Department of Electronics Engineering, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania

3. Department of Manufacturing Engineering and Automation Products, Opole University of Technology, 45-758 Opole, Poland

Abstract

An automated guided vehicle (AGV) obstacle avoidance system based on the grid method and deep learning algorithm is proposed, aiming at the complex and dynamic environment in the industrial workshop of a tobacco company. The deep learning object detection is used to detect obstacles in real-time for the AGV, and feasible paths are generated by the grid method, which ultimately finds an AGV obstacle avoidance solution in complex dynamic environments. The experimental results showed that the proposed system can effectively identify and avoid obstacles in a simulated tobacco production workshop environment, resulting in the average obstacle avoidance success rate of 98.67%. The transportation efficiency of cigarette factories is significantly improved with the proposed system, reducing the average execution time of handing tasks by 27.29%. This paper expects to provide a reliable and efficient solution for AGV obstacle avoidance in real-world industrial workshops.

Funder

Norwegian Financial Mechanism

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3