Improved parameter optimization method for complex assembly process in robotic manufacturing

Author:

Chen Heping,Xu Jing,Zhang Biao,Fuhlbrigge Thomas

Abstract

Purpose High precision assembly processes using industrial robots require the process parameters to be tuned to achieve desired performance such as cycle time and first time through rate. Some researchers proposed methods such as design-of-experiments (DOE) to obtain optimal parameters. However, these methods only discuss how to find the optimal parameters if the part and/or workpiece location errors are in a certain range. In real assembly processes, the part and/or workpiece location errors could be different from batch to batch. Therefore, the existing methods have some limitations. This paper aims to improve the process parameter optimization method for complex robotic assembly process. Design/methodology/approach In this paper, the parameter optimization process based on DOE with different part and/or workpiece location errors is investigated. An online parameter optimization method is also proposed. Findings Experimental results demonstrate that the optimal parameters for different initial conditions are different and larger initial part and/or workpiece location errors will cause longer cycle time. Therefore, to improve the assembly process performance, the initial part and/or workpiece location errors should be compensated first, and the optimal parameters in production should be changed once the initial tool position is compensated. Experimental results show that the proposed method is very promising in reducing the cycle time in assembly processes. Research limitations/implications The proposed method is practical without any limitation. Practical implications The proposed technique is implemented and tested using a real industrial application, a valve body assembly process. Hence, the developed method can be directly implemented in production. Originality/value This paper provides a technique to improve the assembly efficiency by compensating the initial part location errors. An online parameter optimization method is also proposed to automatically perform the parameter optimization process without human intervention. Compared with the results using other methods, the proposed technology can greatly reduce the assembly cycle time.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference14 articles.

1. Experimental research of vibratory alignment using passive compliance devices;MECHANIKA,2014

2. Integrated robotic system for high precision assembly in a semi-structured environment,2007

3. Objective metric study for DOE-based parameter optimization in robotic torque converter assembly,2009

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3