Optimization of industrial process parameter control using improved genetic algorithm for industrial robot

Author:

Yao Cenglin12,Li Yongzhou1,Ansari Mohd Dilshad3,Talab Mohammed Ahmed4,Verma Amit5

Affiliation:

1. Evergrande School of Management, Wuhan University of Science and Technology , Wuhan , Hubei, 430081 , China

2. College of Mechanical and Electrical Engineering, Wuhan Business University , Wuhan , Hubei 430056 , China

3. CMR College of Engineering & Technology , Hyderabad , 501401 , India

4. Department of Engineering of Computer Technology, Al Maarif University College , Ramadi , Iraq

5. University Centre for Research & Development, Chandigarh University , Mohali , Punjab , India

Abstract

Abstract A number of suggestions are made based on the improved evolutionary algorithm and using the polishing parameter optimization of an industrial robot as an example to optimize the industrial process parameter control. By fitting a cubic B-spline curve, the trajectory curve of each joint is determined. The kinematic constraint is replaced with the control point constraint of a B-spline curve, and the time optimal time node is solved using an enhanced evolutionary algorithm. This foundation allows for the creation of the nonlinear trajectory curve that satisfies the time optimization. The research shows that based on the improved genetic algorithm (GA), the “degradation” phenomenon of the traditional GA can be avoided, and the optimal solution can be obtained faster, that is, the polishing working time of the polishing industrial robot reaches the optimal level. An enhanced GA that incorporates simulated annealing is suggested to address the mathematical model of robot deburring process parameter optimization. Population selection is accomplished by the use of metropolis sampling, which successfully addresses the issue of the GA’s simple local convergence. The process parameter optimization verification is done while a robot deburring test platform is being constructed. The test results demonstrate a considerable reduction in burr removal time per unit length and an increase in efficiency when compared with the empirical method.

Publisher

Walter de Gruyter GmbH

Subject

Behavioral Neuroscience,Artificial Intelligence,Cognitive Neuroscience,Developmental Neuroscience,Human-Computer Interaction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3