Dynamic trajectory-tracking control method of robotic transcranial magnetic stimulation with end-effector gravity compensation based on force sensors

Author:

Lin ZeCai,Xin Wang,Yang Jian,QingPei Zhang,ZongJie Lu

Abstract

Purpose This paper aims to propose a dynamic trajectory-tracking control method for robotic transcranial magnetic stimulation (TMS), based on force sensors, which follows the dynamic movement of the patient’s head during treatment. Design/methodology/approach First, end-effector gravity compensation methods based on kinematics and back-propagation (BP) neural networks are presented and compared. Second, a dynamic trajectory-tracking method is tested using force/position hybrid control. Finally, an adaptive proportional-derivative (PD) controller is adopted to make pose corrections. All the methods are designed for robotic TMS systems. Findings The gravity compensation method, based on BP neural networks for end-effectors, is proposed due to the different zero drifts in different sensors’ postures, modeling errors in the kinematics and the effects of other uncertain factors on the accuracy of gravity compensation. Results indicate that accuracy is improved using this method and the computing load is significantly reduced. The pose correction of the robotic manipulator can be achieved using an adaptive PD hybrid force/position controller. Originality/value A BP neural network-based gravity compensation method is developed and compared with traditional kinematic methods. The adaptive PD control strategy is designed to make the necessary pose corrections more effectively. The proposed methods are verified on a robotic TMS system. Experimental results indicate that the system is effective and flexible for the dynamic trajectory-tracking control of manipulator applications.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference22 articles.

1. Constraint-based specification of hybrid position-impedance-force tasks,2014

2. Adaptive vision and force tracking control for robots with constraint uncertainty;IEEE/ASME Transactions on Mechatronics,2010

3. Multi-Interaction control for manipulators in unknown environments based on hybrid position-impedance-force control;Robot,2017

4. Hybrid position/force control of 6-dof hydraulic parallel manipulator using force and vision;Industrial Robot: An International Journal,2016

5. An optimal path-generation algorithm for manufacturing of arbitrarily curved surfaces using uncalibrated vision;Robotics and Computer-Integrated Manufacturing,2008

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3