Hybrid position/force control of 6-dof hydraulic parallel manipulator using force and vision

Author:

Gao Changhong,Cong Dacheng,Liu Xiaochu,Yang Zhidong,Tao Han

Abstract

Purpose The purpose of this paper is to propose a hybrid position/force control scheme using force and vision for docking task of a six degrees of freedom (6-dof) hydraulic parallel manipulator (HPM). Design/methodology/approach The vision system consisted of a charge-coupled device (CCD) camera, and a laser distance sensor is used to provide globe relative position information. Also, a force plate is used to measure local contact forces. The proposed controller has an inner/outer loop structure. The inner loop takes charge of tracking command pose signals from outer loop as accurate as possible, while the outer loop generates the desired tracking trajectory according to force and vision feedback information to guarantee compliant docking. Several experiments have been performed to validate the performance of the proposed control scheme. Findings Experiment results show that the system has good performance of relative position tracking and compliant contact. In whole docking dynamic experiment, the amplitudes of contact forces are well controlled within 300 N, which can meet perfectly the requirement of the amplitude being not more than 1,000 N. Originality/value A hybrid position/force control scheme using force and vision is proposed to make a 6-dof HPM dock with a moving target object compliantly.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference38 articles.

1. Integration of Vision/force Robot Control using Automatic Decision System for Performing Different Successive Tasks,2014

2. Vision/force control of parallel robots;Mechanism and Machine Theory,2011

3. Adaptive vision and force tracking control for robots with constraint uncertainty;IEEE/ASME Transactions on Mechatronics,2010

4. A survey of robot interaction control schemes with experimental comparison;Mechatronics IEEE/ASME Transactions on,1999

5. Development of an in-pipe inspection and cleaning robot;Journal of the Korean Society of Marine Engineering,2009

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3