Abstract
PurposeThe study explores the readiness of government agencies to adopt artificial intelligence (AI) to improve the efficiency of disaster relief operations (DRO). For understanding the behavior of state-level and national-level government agencies involved in DRO, this study grounds its theoretical arguments on the civic voluntarism model (CVM) and the unified theory of acceptance and use of technology (UTAUT).Design/methodology/approachWe collected the primary data for this study from government agencies involved in DRO in India. To test the proposed theoretical model, we administered an online survey questionnaire to 184 government agency employees. To test the hypotheses, we employed partial least squares structural equation modeling (PLS-SEM).FindingsOur findings confirm that resources (time, money and skills) significantly influence the behavioral intentions related to the adoption of AI tools for DRO. Additionally, we identified that the behavioral intentions positively translate into the actual adoption of AI tools.Research limitations/implicationsOur study provides a unique viewpoint suited to understand the context of the adoption of AI in a governmental context. Companies often strive to invest in state-of-the-art technologies, but it is important to understand how government bodies involved in DRO strategize to adopt AI to improve efficiency.Originality/valueOur study offers a fresh perspective in understanding how the organizational culture and perspectives of government officials influence their inclinations to adopt AI for DRO. Additionally, it offers a multidimensional perspective by integrating the theoretical frameworks of CVM and UTAUT for a greater understanding of the adoption and deployment of AI tools with organizational culture and voluntariness as critical moderators.
Subject
Management of Technology and Innovation,Organizational Behavior and Human Resource Management,Strategy and Management
Reference79 articles.
1. The moderating effect of technology awareness on the relationship between UTAUT constructs and behavioural intention to use technology: a conceptual paper;Australian Journal of Business and Management Research,2013
2. A Bayesian analysis of attribution processes;Psychological Bulletin,1975
3. Demographic factors as determinants of e-governance adoption: a field study in the United Arab Emirates (UAE);Transforming Government: People, Process and Policy,2015
4. Aldrich, D.P., Sawada, Y. and Oum, S. (2015), “Community, market, and government responses to disaster”, in Aldrich, D., Oum, S. and Sawada, Y. (Eds), Resilience and Recovery in Asian Disasters, Springer, Tokyo, pp. 1-16.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献