Forecasting value-at-risk and expected shortfall in emerging market: does forecast combination help?

Author:

Le Trung HaiORCID

Abstract

PurposeThis paper investigates how various strategies for combining forecasts, both simple and optimised approaches, are compared with popular individual risk models in estimating value-at-risk (VaR) and expected shortfall (ES) in emerging market at alternative risk levels.Design/methodology/approachUsing the case study of the Vietnamese stock market, the author produced one-day-ahead VaR and ES forecast from seven individual risk models and ten alternative forecast combinations. Next, the author employed a battery of backtesting procedures and alternative loss functions to evaluate the global predictive accuracy of the different methods. Finally, the author investigated the relative performance over time of VaR and ES forecasts using fluctuation test.FindingsThe empirical results indicate that, although combined forecasts have reasonable predictive abilities, they are often outperformed by one individual risk model. Furthermore, the author showed that the complex combining methods with optimised weighting functions do not perform better than simple combining methods. The fluctuation test suggests that the poor performance of combined forecasts is mainly due to their inability to cope with periods of instability.Research limitations/implicationsThis study reveals the limitation of combining strategies in the one-day-ahead VaR and ES forecasts in emerging markets. A possible direction for further research is to investigate whether this finding holds for multi-day ahead forecasts. Moreover, the inferior performance of combined forecasts during periods of instability motivates further research on the combining strategies that take into account for potential structure breaks in the performance of individual risk models. A potential approach is to improve the individual risk models with macroeconomic variables using a mixed-data sampling approach.Originality/valueFirst, the authors contribute to the literature on the forecasting combinations for VaR and ES measures. Second, the author explored a wide range of alternative risk models to forecast both VaR and ES with recent data including periods of the COVID-19 pandemic. Although forecast combination strategies have been providing several good results in several fields, the literature of forecast combination in the VaR and ES context is surprisingly limited, especially for emerging market returns. To the best of the author’s knowledge, this is the first study investigating predictive power of combining methods for VaR and ES in an emerging market.

Publisher

Emerald

Reference37 articles.

1. Why does forecast combination work so well?;International Journal of Forecasting,2020

2. Fractionally integrated generalized autoregressive conditional heteroskedasticity;Journal of Econometrics,1996

3. The combination of forecasts;Journal of the Operational Research Society,1969

4. Regression-based expected shortfall backtesting;Journal of Financial Econometrics,2022

5. Globalization and asset returns;Annual Review of Financial Economics,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3