Regression-Based Expected Shortfall Backtesting

Author:

Bayer Sebastian1,Dimitriadis Timo23ORCID

Affiliation:

1. University of Konstanz

2. University of Hohenheim

3. Heidelberg Institute for Theoretical Studies (HITS)

Abstract

Abstract This article introduces novel backtests for the risk measure Expected Shortfall (ES) following the testing idea of Mincer and Zarnowitz (1969). Estimating a regression model for the ES stand-alone is infeasible and thus, our tests are based on a joint regression model for the Value at Risk (VaR) and the ES, which allows for different test specifications. These ES backtests are the first which solely backtest the ES in the sense that they only require ES forecasts as input variables. As the tests are potentially subject to model misspecification, we provide asymptotic theory under misspecification for the underlying joint regression. We find that employing a misspecification robust covariance estimator substantially improves the tests’ performance. We compare our backtests to existing joint VaR and ES backtests and find that our tests outperform the existing alternatives throughout all considered simulations. In an empirical illustration, we apply our backtests to ES forecasts for 200 stocks of the S&P 500 index.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Finance

Reference66 articles.

1. Backtesting Expected Shortfall;Acerbi;Risk Magazine,2014

2. Quantile Regression under Misspecification, with an Application to the u.s. wage Structure;Angrist;Econometrica,2006

3. Generalized Autoregressive Score Models in R: The GAS Package;Ardia;Journal of Statistical Software,2019

4. Coherent Measures of Risk;Artzner;Mathematical Finance,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3