k-Nearest Neighbors Estimator for Functional Asymmetry Shortfall Regression

Author:

Alamari Mohammed B.1,Almulhim Fatimah A.2ORCID,Kaid Zoulikha1,Laksaci Ali1

Affiliation:

1. Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia

2. Department of Mathematical Sciences, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

This paper deals with the problem of financial risk management using a new expected shortfall regression. The latter is based on the expectile model for financial risk-threshold. Unlike the VaR model, the expectile threshold is constructed by an asymmetric least square loss function. We construct an estimator of this new model using the k-nearest neighbors (kNN) smoothing approach. The mathematical properties of the constructed estimator are stated through the establishment of the pointwise complete convergence. Additionally, we prove that the constructed estimator is uniformly consistent over the nearest neighbors (UCNN). Such asymptotic results constitute a good mathematical support of the proposed financial risk process. Thus, we examine the easy implantation of this process through an artificial and real data. Our empirical analysis confirms the superiority of the kNN-approach over the kernel method as well as the superiority of the expectile over the quantile in financial risk analysis.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Reference33 articles.

1. Coherent measures of risk;Artzner;Math. Financ.,1999

2. A comparison of expected shortfall estimation models;Righi;J. Econ. Bus.,2015

3. A new non-parametric estimation of the expected shortfall for dependent financial losses;Moutanabbir;J. Stat. Plan. Inference,2024

4. On the estimation of Value-at-Risk and Expected Shortfall at extreme levels;Lazar;J. Commod. Mark.,2024

5. Nonparametric estimation and sensitivity analysis of expected shortfall;Scaillet;Math. Financ. Int. J. Math. Stat. Financ. Econ.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3