Developing a three stage coordinated approach to enhance efficiency and reliability of virtual power plants

Author:

Amissah Jeremiah,Abdel-Rahim Omar,Mansour Diaa-Eldin A.,Bajaj Mohit,Zaitsev Ievgen,Abdelkader Sobhy

Abstract

AbstractA Virtual Power Plant (VPP) is a centralized energy system that manages, and coordinates distributed energy resources, integrating them into a unified entity. While the physical assets may be dispersed across various locations, the VPP integrates them into a virtual unified entity capable of responding to grid demands and market signals. This paper presents a tri-level hierarchical coordinated operational framework of VPP. Firstly, an Improved Pelican Optimization Algorithm (IPOA) is introduced to optimally schedule Distributed Energy Resources (DERs) within the VPP, resulting in a significant reduction in generation costs. Comparative analysis against conventional algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) demonstrates IPOA's superior performance, achieving an average reduction of 8.5% in generation costs across various case studies. The second stage focuses on securing the optimized generation data from rising cyber threats, employing the capabilities of machine learning, preferably, a convolutional autoencoder to learn the normal patterns of the optimized data to detect deviations from the optimized generation data to prevent suboptimal decisions. The model exhibits exceptional performance in detecting manipulated data, with a False Positive Rate (FPR) of 1.92% and a Detection Accuracy (DA) of 98.06%, outperforming traditional detection techniques. Lastly, the paper delves into the dynamic nature of the day ahead market that the VPP participates in. In responding to the grid by selling its optimized generated power via the day-ahead market, the VPP employs the Prophet model, another machine learning technique to forecast the spot market price for the day-ahead to mitigate the adverse effects of price volatility. By utilizing Prophet forecasts, the VPP achieves an average revenue increase of 15.3% compared to scenarios without price prediction, emphasizing the critical role of predictive analytics in optimizing economic gains. This tri-level coordinated approach adopted addresses key challenges in the energy sector, facilitating progress towards achieving universal access to clean and affordable energy.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3