Reflow profiling with the aid of machine learning models

Author:

Lai Yangyang,Park Seungbae

Abstract

Purpose This paper aims to propose a method to quickly set the heating zone temperatures and conveyor speed of the reflow oven. This novel approach intensely eases the trial and error in reflow profiling and is especially helpful when reflowing thick printed circuit boards (PCBs) with bulky components. Machine learning (ML) models can reduce the time required for profiling from at least half a day of trial and error to just 1 h. Design/methodology/approach A highly compact computational fluid dynamics (CFD) model was used to simulate the reflow process, exhibiting an error rate of less than 1.5%. Validated models were used to generate data for training regression models. By leveraging a set of experiment results, the unknown input factors (i.e. the heat capacities of the bulkiest component and PCB) can be determined inversely. The trained Gaussian process regression models are then used to perform virtual reflow optimization while allowing a 4°C tolerance for peak temperatures. Upon ensuring that the profiles are inside the safe zone, the corresponding reflow recipes can be implemented to set up the reflow oven. Findings ML algorithms can be used to interpolate sparse data and provide speedy responses to simulate the reflow profile. This proposed approach can effectively address optimization problems involving multiple factors. Practical implications The methodology used in this study can considerably reduce labor costs and time consumption associated with reflow profiling, which presently relies heavily on individual experience and skill. With the user interface and regression models used in this approach, reflow profiles can be swiftly simulated, facilitating iterative experiments and numerical modeling with great effectiveness. Smart reflow profiling has the potential to enhance quality control and increase throughput. Originality/value In this study, the employment of the ultimate compact CFD model eliminates the constraint of components’ configuration, as effective heat capacities are able to determine the temperature profiles of the component and PCB. The temperature profiles generated by the regression models are time-sequenced and in the same format as the CFD results. This approach considerably reduces the cost associated with training data, which is often a major challenge in the development of ML models.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3