Real-time tuning of PID controller based on optimization algorithms for a quadrotor

Author:

Can Muharrem Selim,Ercan Hamdi

Abstract

Purpose This study aims to develop a quadrotor with a robust control system against weight variations. A Proportional-Integral-Derivative (PID) controller based on Particle Swarm Optimization and Differential Evaluation to tune the parameters of PID has been implemented with real-time simulations of the quadrotor. Design/methodology/approach The optimization algorithms are combined with the PID control mechanism of the quadrotor to increase the performance of the trajectory tracking for a quadrotor. The dynamical model of the quadrotor is derived by using Newton-Euler equations. Findings In this study, the most efficient control parameters of the quadrotor are selected using evolutionary optimization algorithms in real-time simulations. The control parameters of PID directly affect the controller’s performance that position error and stability improved by tuning the parameters. Therefore, the optimization algorithms can be used to improve the trajectory tracking performance of the quadrotor. Practical implications The online optimization result showed that evolutionary algorithms improve the performance of the trajectory tracking of the quadrotor. Originality/value This study states the design of an optimized controller compared with manually tuned controller methods. Fitness functions are defined as a custom fitness function (overshoot, rise-time, settling-time and steady-state error), mean-square-error, root-mean-square-error and sum-square-error. In addition, all the simulations are performed based on a realistic simulation environment. Furthermore, the optimization process of the parameters is implemented in real-time that the proposed controller searches better parameters with real-time simulations and finds the optimal parameter online.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetically Tuned Linear Quadratic Regulator for Trajectory Tracking of a Quadrotor;Academic Platform Journal of Engineering and Smart Systems;2024-01-31

2. Simultaneous arm morphing quadcopter and autonomous flight system design;Aircraft Engineering and Aerospace Technology;2023-09-22

3. Sliding Surface Designs for Visual Servo Control of Quadrotors;Drones;2023-08-14

4. Attitude Control of Quadrotor UAVs Based on Adaptive Sliding Mode;International Journal of Control, Automation and Systems;2023-06-23

5. Comprehensive review of various control strategies for quadrotor unmanned aerial vehicles;FME Transactions;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3